Kchip: A Radiation Tolerant Digital Data Concentrator chip for the CMS Preshower Detector

9th Workshop on Electronics for LHC Experiments Amsterdam, Sept. 30, 2003

KLOUKINAS Kostas CERN, EP/CME-PS

Preshower Front-End System

- Kchip Architecture
- Kchip Implementation

Prototype Test Results

Data Concentration

• Can be configured to readout 1~4 PACE chips.

Event Data Formatting

- Align data into 16-bit words.
- Assemble an Event Packet.
- Assign a Bunch Count (BC) and Event Count (EC) Identifier.
- Link Protocol for transmission through a Gigabit Optical Link.

Readout Controller

- Trigger Command Decoding
- PACE Readout Synchronization Monitoring
- Front-End Buffers Overflow Detection / Prevention
- PACE & ADC clock and Trigger Command Distribution

• PACE generated traffic

3 columns/trigger 32 samples/column

96 samples/trigger 12-bit ADC 100KHz Trigger Rate

Traffic from 4 PACE chips = 57.6MB/sec

Gigabit Link Throughput
(GOL chip) 80 MB/sec

PACE event readout time = 6.9 µsec Kchip event readout time = 7.8 µsec

• The difference in the readout times and the stochastic nature of trigger arrivals mandates the need of data buffering on the Kchip.

14.4 MB/sec

Model of front-end system FIFOs.

- **Trigger arrivals follow an exponential distribution.**
- Kchip service time follow a uniform distribution. PACE FIFO
 - An analytic queuing model is difficult to develop.
 - A simulation model of the complete front₂end system has been developed.

 μ_{P}

- PACE FIFO can store up to 10 events.
 - From simulations: P_{rejection} = 1.9E-04 @ 100KHz trigger rate. Ο
- Kchip FIFOs:
 - Kchip FIFOs should be sized for lower event rejection probability. Ο

Time examined	15.10^{2}	S
Number of events	$1.5 \ 10^{6}$	
Mean interarrival time of events	10.059	μs
PACE rejected events	7	
Kchip rejected events	0	
Maximum Trigger FIFO occupancy	26	words
Maximum Column FIFO occupancy	52	words
Maximum Data FIFO occupancy	863	words
Average Trigger FIFO occupancy	3	words
Average Column FIFO occupancy	2	words
Average Data FIFO occupancy	36	words

Data FIFO ColAddr FIFO Trigger FIFO

Amsterdam, Sept. 30, 2003

Implementation of Kchip FIFOs

FIFO	Native Size of SRAM module	Actual Capacity
Data	1 Kword x 18 bits	10 events (1024/96)
Column Address	128 words x 27 bits	10 events (matches Data FIFO)
Trigger	128 words x 27 bits	64 triggers (128/2)

- FIFOs are implemented using a "Configurable Dual-Ported SRAM macro cell".
- Two macro cells:
 - Column Addr. & Trigger FIFO
 - 128 words x 27 bits
 - Data FIFO
 - 1024 words x 18 bits

128 x 27bits

Amsterdam, Sept. 30, 2003

KLOUKINAS Kostas EP/CME-PS

Packet Formatter

ColAddrOut

Normal Event

Null Event

- The Kchip employs a packet oriented data transmission protocol.
- The Kchip Link Layer Protocol uses two uniquely defined transmission control characters, the IDLE and the SOH.
 - The IDLE character allows the receiver to obtain and maintain bit synchronization.
 - The SOF character indicates the beginning of the frame and delimits the boundaries of subsequently transmitted frames.

16

- The Kchip can seamlessly use both encoding schemes supported by the GOL chip: the CIMT and the 8b/10b encoding.
 - The flexibility of using both encoding schemes is realized by properly choosing transmission control symbols (SOF, IDLE) which are supported in both encoding schemes.

- The Kchip distributes to the PACE chips a calibration pulse of programmable delay with respect to the system clock and with programmable width (1 – 256 cycles).
- The DLL from APV25 chip has been ported into the Kchip.
 - Delay adjustment: 16 steps of 3.25ns
- After an interval equal to the trigger latency a Trigger signal is generated by the Kchip in order to readout the Calibration Data.
 - The automatic generation of the Calibration Event can be disabled.

The DLL block as delivered from RAL.

Amsterdam, Sept. 30, 2003

- The I²C interface can be used to access:
 - The Kchip Internal Registers (There are 25 Status & Control Registers).
 - The Kchip FIFOS (Data, Column Addr. and Trigger FIFOs).
- Supports 7-bit addressing Single Byte transfers.
- Synchronous design. (40MHz system clock)

- The Kchip can detect imminent overflow conditions and prevent buffers from actually overflowing and lose synchronization.
- Trigger Inhibit Logic on Kchip.
 - If a FIFO signals an Almost Full condition then the Trigger signal will be gated until some data has been read out and space is made available.
 - The readout chain gets informed about the trigger gating condition and NULL Events are inserted to maintain Event Readout Synchronization.
 - The Trigger Inhibit logic can be enabled or disabled.

- Under normal operation the pipeline memories in the PACE chips should run synchronously.
- The Kchip monitors the synchronization of the PACE chips by comparing the status of their control signals on a cycle to cycle basis.
 - Cross-checks the 4 "DataValid" signals.
 - Cross-checks the 4 "AlmostFull" signals.
- "PACE out of sync" condition is signaled when the readout sequence in any of the PACE chips is not synchronous to the Kchip internal readout sequencer.
- The "PACE out of sync" condition is flagged in the data packet header and in a special status register accessible through the I²C bus.

SEU Tolerant Design

- Protect Control Logic using Triple Module Redundancy.
 - All State Machines and Configuration Registers have been triplicated.
- Leave Data Path unprotected.
 - SEU errors affect the integrity of small amount of information and does not lead to a loss of readout synchronization.

Amsterdam, Sept. 30, 2003

KLOUKINAS Kostas EP/CME-PS

Kchip Design flow

- Design implemented using the CERN DSM Design Kit in 0.25µm commercial CMOS technology.
- Hardware Description Language: Verilog
- Automatic synthesis and layout: Synopsys, Silicon Ensemble
- Verilog XL simulation
- Static timing analysis: Pearl
- Design flow is "scripted".
- Design for Testability Functional description
 Can be used to access and test the on-chip SRAMs
 - Scan Path

Syntesis

EP/CME-PS

 For design debugging and production testing.

- Number of Digital Standard cells
 - Registers: 1,400
 - Gates: 13,300
- Clock tree statistics
 - Number of buffers: 189
 - Number of Levels: 6
 - Max. delay: 685 ns
 - Max. skew: 65 ps
- Special Macro Cells
 - 4x 1024 x 18bit, dual-port SRAM
 - 2x 128 x 27bit, dual-port SRAM
 - o DLL
- Number of pad cells
 - I/O pins: 131
 - Power pins: 17
 - Total pins: 148

Size: $6 \times 5 \text{ mm}^2$ Pad Limited design.

Prototype Tests

- Test functionality & validate specifications conformity.
- Method
 - Make use of a Digital Tester at CERN (MIC group).
 - Use a generic "Test Fixture" board to host the chip.
 - Use a ceramic package (CPGA) to facilitate bonding.
 - "Test Vectors" were generated from Front-End system simulations.

CERN

- (a) Kchip in Test Mode
 - Access on-chip FIFOs and internal registers through the I²C interface.
- (b) Kchip in Test Mode
 - Filling the on-chip FIFOs from the ADC bus and then reading data back through the I²C interface.
- (c) Kchip in Test Mode
 - Loading data into the FIFOs through the I²C interface and then reading it out from the GOL bus.
- (d) Kchip in Normal Mode
 - Sending triggers and reading out events through the GOL.

The functionality of the Kchip has been successfully verified.

- All modes of operation have been verified.
- No loss of readout synchronization up to 200KHz trigger rate (Poisson distribution).
- I²C Interface
 - I²C interface maximum speed: 3.33 Mbit/s.
 - Kchip has been tested with the CCU chip.
- All Internal Registers were accessible. ID fuse bits were read out.
- Calibration Event Generation Logic
 - Verified the Programmable Timing of the CalPulse (on chip DLL)
- A layout bug in the Data FIFO SRAM module has been identified.
 - In specific traffic conditions, some data packets (0.5%) had errors in the data field.

- Maximum operating frequency: 60MHz
 - The limiting factor was due to the bug in the SRAM module.
- Power consumption
 - Test Conditions: 40MHz, VDD=2.5V, T=25°C
 - \circ I_{core} = 68mA, P_{core} = 170mW
 - \circ I_{peri} = 182mA, P_{peri} = 455mW
 - \circ I_{total} = 250mA, P_{total} = 625 mW
- Irradiation Tests
 - Use of an X-ray machine at CERN.
 - Step Irradiation at 1, 3, 5, 10, 20 MRad (SiO₂).
 - Dose Rate = 2.04 MRad/h
 - Devices were operational up to 20 MRad @ 2.5V, 40MHz.
 - Observed a *small drop in power dissipation*.
 - ΔI = 2% @ 10MRad.

CERN

- Conclusions
 - The first prototype of the Kchip has been successfully fabricated.
 - Functionality has been verified on a digital tester.
- Future Plans
 - In system tests are under preparation.
 - SEU tests will follow.
 - Submission in next MPW.
 - Implement the fix for the bug in the SRAM module.
 - Implement Hamming encoding in the FIFOs.
 - Implement Built In Shelf Test circuit for the FIFOs.
- Acknowledgements
 - Microelectronics group in Rutherford Appleton Lab. particularly Quentin Morrisey for the APV25 chip DLL macro cell.

