Testing the Kchip

Preshower Electronics Meeting 28/07/2003

Testing the Kchip

Functional Tests

> Irradiation Tests

In System Tests

Functional Tests

Scope

• Test functionality & validate specifications conformity.

Method

- Make use of the in-house Digital Tester.
- Use a generic "Test Fixture" to host the chip.
- Use a ceramic package (CPGA) and in-house bonding.
- Use "Test Vectors" from the simulation tool.

Functional Tests procedure

Mar. 6, 2003

- A pattern translation tool automatically generates test pattern sequences from the Verilog simulation results
- The test pattern sequences are applied to the device under test by a digital tester equipment (ATS 200)
- The digital tester compares the device outputs with their expected value obtained from the Verilog simulation

Functionality Tests

➢ I²C interface

- Successful tests on the digital tester.
- I2C interface maximum speed: 3.33 Mbit/s
- Successful Kchip communication with CCU.
 - 40MHz clock coming from the CCU board.

> Trigger Decoder

- Decoding back to back commands.
- Trigger Inhibit Logic.
- Readout of Fuse bits
- Calibration Event Generation Logic
 - CalPulse Generation
 - Programmable CalPulse Timing (on chip DLL)

Mar. 6, 2003

Testing the DLL

Test: Varying the CalPulse Delay

1st tap

Incremental delay: 3.13 ns / tap

3rd tap

Testing the DLL

Test: Varying the CalPulse Width

Functionality Tests

- Kchip in Normal Mode
 - Normal Readout
 - Packet Formatter & GOL interface.
 - Some Packets contained errors in data field.
 - Exception Handling
 - Kchip Data FIFO overflow.
 - Kchip Trigger FIFO overflow.
 - PACE Trigger FIFO Overflow.
 - PACE out of Sync.
 - Link Test Mode
 - GOL interface features
- SEU counter: No errors observed.
- Kchip in Test Mode
 - Access Data, Column & Trigger FIFOs from I²C.

Test pattern sequences (1)

- (a) I2C read/write to the FIFOs and to the internal registers
- (b) Filling in the FIFOs from the ADC input bus and then reading data back through I2C interface

Test pattern sequences (2)

- (c) Loading data into the FIFOs through the I2C interface and then reading it out from the GOL output bus
- (d) Normal operation of the circuit, verifying the response in case of FIFO overflow

> Observations

- Errors are seen only in the DATA field.
- Error rate ~ 1event/100 triggers @100KHz exponential trigger rate.
- Error rate increases with the trigger rate.
- CRC is computed correctly on the erroneous data!
 - > => DDU will see a packet with matching CRC!
 - > => Errors are generated before the GOL interface.
- Error Rate depends on:
 - Process
 - Different chips give different number of errors.
 - Temperature
 - At lower temperature fewer errors.
 - Voltage
 - At lower voltages fewer errors
 - => indication of signal race condition.

Mar. 6, 2003

Kostas Kloukinas, Sandro Bonacini

Error in data packets

> Use of Scan Path excluded errors in the standard logic blocks.

- Use I²C to test Data FIFOs
 - => errors are generated in the SRAMs

Errors are "traffic" dependent

- If Write only and then Read => No Errors
- If Write followed by Read => Errors possible
- Errors are seen for specific combinations of WA (Write Address) and RA (Read Address) pointers.

- Generated special test vectors to produce the following traffic:
 - Send a number of triggers spaced at 6.9µs (PACE readout time) to establish a difference between WA and RA pointers.
 - Send hundreds of triggers spaced at 7.475 µs (Kchip service time) to maintain the pointers difference through out the test.

- Error generation is more pronounced when the difference between the WA and RA pointers is ~64 locations !
 - Indication that the error comes from the address decoding of the 6 lower bits
 - Possible causes:
 - problem in wordline decoder of the SRAM
 - Interface problem with the FIFO controller.

WA - RA	errors	
0	0	
56	210	
63	924	
70	373	
129	0	
199	903	

Correlation between two consecutive WA - RA addresses.

- Generated special test vectors to produce random traffic @ 100KHz rate:
 - Perform the XOR function on the WA and RA pointers.
 - Fold back addresses beyond 128 (range of wordline decoder).
 - Produce histogram.
 - Errors are localized around 64.
 - => bit A6 is not decoded correctly

RA[6:0]	WA[6:0]	RA[6:0]	WA[6:0]	xor
2D	6C	0 1 0 1 1 0 1	1 1 0 1 1 0 0	1000001
2E	6F	0 1 0 1 1 1 0	1 1 0 1 1 1 1	1000001
2F	6C	0 1 0 1 1 1 1	1 1 0 1 1 0 0	1000011
2F	6E	0 1 0 1 1 1 1	1 1 0 1 1 1 0	1000001
30	71	0 1 1 0 0 0 0	1 1 1 0 0 0 1	1000001
31	70	0110001	1 1 1 0 0 0 0	1000001
31	72	0 1 1 0 0 0 1	1 1 1 0 0 1 0	1000011
32	72	0 1 1 0 0 1 0	1 1 1 0 0 1 0	1000000
32	73	0 1 1 0 0 1 0	1 1 1 0 0 1 1	1000001
33	70	0 1 1 0 0 1 1	1 1 1 0 0 0 0	100011
33	72	0 1 1 0 0 1 1	1 1 1 0 0 1 0	1000001
33	7D	0 1 1 0 0 1 1	1 1 1 1 1 0 1	1001110
34	75	0 1 1 0 1 0 0	1 1 1 0 1 0 1	1000001
34	77	0 1 1 0 1 0 0	1 1 1 0 1 1 1	100011
35	70	0 1 1 0 1 0 1	1 1 1 0 0 0 0	1000101
35	74	0 1 1 0 1 0 1	1 1 1 0 1 0 0	100001
36	75	0 1 1 0 1 1 0	1 1 1 0 1 0 1	1000011
36	77	0 1 1 0 1 1 0	1 1 1 0 1 1 1	100001
37	72	0 1 1 0 1 1 1	1 1 1 0 0 1 0	1000101
37	74	0 1 1 0 1 1 1	1 1 1 0 1 0 0	100011
37	76	0110111	1 1 1 0 1 1 0	100001
38	79	0111000	1 1 1 1 0 0 1	100001

> Problem is located

 in the decoding function of the lower part of the addresses in the SRAM modules that are used to implement the Data FIFOs.

> Fixes

- Increase fan-out strength of standard cell login of the FIFO controller.
- Layout of SRAM module needs revision.
 - Routing of the wordline decoder address bus.

Power Consumption

Measurements (VDD= 2.5V)

- I_{peri} = 182mA, P_{peri} = 455mW
- $I_{core} = 68mA$, $P_{core} = 170mW$
- I_{total} = 250mA, P_{total} = 625 mW

Simulations

- Pcore = 200mW
- Pperi
 - $LVDS_{RX} 32 \times 6.9 mW = 221 mW$
 - LVDS_{TX} 17 x 10.4mW = 177mW
 - R_{term.} 17 x 1.2mW = 21mW
 - P_{total}

= 419mW

Irradiation Tests

> Total Dose tests

- Use the X-ray machine to reach 20MRad
- The "Test Fixture" board was used for the irradiation test.
- Step Irradiation of one chip at 1, 3, 5, 10, 20 MRad.
 - Chip was functional up to 20MRad @ 2.5V, 40MHz.
 - Observed a slight drop in power dissipation.
 - $I_{pre-rad} = 283 \text{mA}, I_{10MRad} = 272 \text{mA} => \Delta I = 2\%$

SEU tests

- Make use of the FE system motherboard.
- SEU tests could be scheduled in common for all our FE electronics chips (PACE, ADC, Kchip)
- SEU tests are very important and should be scheduled very early.
- Evaluated results are needed before the *next submission* of the chip.

In System tests

> Scope

- Integration of the Kchip on the "Preshower FE system motherboard"
 - Verify the Kchip interfacing with the PACE_AM, ADC and control (QPLL, TPLL, CCU) chips.
 - Evaluate the Kchip in-system functionality.
- > Planning
 - Packaging on the fpPGA
 - Revised the bonding scheme to facilitate LVDS signal routing.
 - Packaging of 144 chips has been ordered.
 - Customized test-board for the Digital Tester (PCB layout in process).
 This board can be used for production testing.
 - Work with Serge
 - Help in the motherboard design for hosting the Kchip.
 - Help in the system tests.

Next Run Wish List

> Mandatory

- Fix Data FIFO SRAM.
- Extend the fuse bits from 16 to 24.
- I²C I/O pads with hysterisis.

> Provisional

- Protect Data FIFOs using Hamming Encoding.
- BIST (Built In Self Test) for the FIFOs.
- Divide the scan path to reduce production testing time.
 - 1 scan path chain results in ~ 6min of test time. (Present)
 - 5 scan path chains results in ~ 1 min of test time.

Not yet known

Input needed from In System Tests !

Mar. 6, 2003

Design Review

Mar. 6, 2003

Kostas Kloukinas, Sandro Bonacini