

Preshower - CMS Synchronization Issues

This presentation is the response to the *CMS Synchronisation Document* on behalf of the CMS Preshower

Issues covered:

Preshower Readout and Control Architecture

Sub-Detector Synchronisation

General Readout & Control Architecture

Preshower Readout & Control Front-End Electronics

Detector Si gnals Timing characteristics

*6cm * 2mm Si strips (pads) ³⁰⁰*µ*m thick, producing ~ 4fC / mip Signal response linear over 400 mips*

- Rise time : 5 ns (electrons)

- The signal decreases to about 1/5 of it's maximum value at 10ns

- The signal then gently decreases linearly to zero which is reached around 25 ns (hole collection)

Detector Si gnals Synchronisation Issues

Synchronization of detector signals with 40MHz clock

** Particle "time of flight" corresponds to approx. 1ns across the Preshower.*

** The PLLs are grouped in rings of about 8, each one inserting a delay on the clock. A timing curve would be done for each region adjusting the phase of the clock for each PLL using particles to align peaks.*

Distribution of fast control signals

** The Preshower uses the tracker fast control distribution system. Hence : The FEC delivers the Clock, LV1A, Reset and Calibration signal through an optical link to the PLLs on the Front-End electronics. The PLLs then send both a 40MHz phase adjusted clock and a (LV1A, Reset, Cal) signal in LVDS to the Readout Front-End chips (PACE, K-chip).*

Calibration and Test Triggers

- ϵ Since triggers in T+1 and T+2 are forbidden, we intend to use combinations of trigger patterns for various functions.
	- 1 0 0 … LV1A
	- 1 1 0 ... Test Pulse (calibration and alignment testing)
	- 10 1… Reset
	- (1 1 1… BC0)

In calibration mode : A LV1A should therefore arrive after the test pulse signal with a delay equal to the LV1A latency + a few clock periods.

Cloc k p hase adjus tmen t an d Jitter performance

Requirements for clock jitter

- The charg e measurement accuracy of the Preshower is approx. 5%. Charge integration in 3 time slots insensitive to jitter at the ns level. Voltage sampling with 3 samples, 30ns peaking time -> simulations show a 1ns jitter from one sample to the next gives \sim 2% error. Hence a jitter $<$ 1ns p.p. is tolerable.
- The operation of High Speed Links requires a low jitter clock.

Requirements for clock Phase adjustments

- Preliminary simulations show that voltage sampling using 3 samples and a ±2ns p hase variations has almost no impact on the charg e measurement.
- The step size of the PLL is 1ns. This is good enough for the Preshower.
- The phase will be scanned in 1ns steps to correctly position detector pulses.
- We do not expect to have to adjust the clock phase often.

Bunch Crossing Identification

Bunch crossing identification and Clock Phase monitoring

Histogram method *Probability of a non-zero event at low luminosity ……. 3*10-3 Say 50 entries per bunch crossing, 3560 bunch crossing per 89us Me therefore need 6*10⁷ events > 800 s (with 75kHz LV1A)*

This assumes :

** Good S/N (High gain mode) * Histogram at the full rate (75kHz) either in the DAQ or by a* µ*p in the FED (we w ould need a bunch crossing no. for each trigger).*

Synchronization Procedure

As above

Verification : Correlate a large energy deposition in the ECAL (a few GeV) with the Preshower

Fron t -End Pipeline - Derandomizer

F PACE

- Voltage Sampling technique
- **Radiation Hard**
- \bullet 32 (+4) channels
- **· 160 cells deep**
- 3 samples per Trigger
- Programmable Latency
- Calibration & biasing on chip
- 24 words deep FIFO, hence up to 8 Triggers can be stored

May 12, 2000 KLOUKINAS Kostas CERN EP/CME 10

Front-End Pipeline Overflow

Front-End FIFO Overflow

Buffer Overflow Handling

- Front-End PIPELINE (PACE chip)
	- Trigger Inhibit Logic on the Front-End (K-chip).
		- We intent to have a Trigger Inhibit logic running on the Front-End electronics (K-chip) which prevents an overflow condition on the PACE. If PACE gets full then LV1A will be blocked until some data has been read out and space is made available.
		- The readout chain gets informed about the trigger gating condition and null events are inserted to maintain readout Synchronization.
- Front-End Readout FIFO (K-chip)
	- Buffer size for lower overflow probability than in the Pipelines
	- Trigger inhibit Logic on the Front-End (on chip)
		- Event Counter is incremented and
		- A null e vent is inserte d which is flagged appropria tely.

Readout Synchronization

- BC counter to check for clock line miss/bounce pulses
- EC_{relative} counter to check for LV1A line miss/bounce pulses
- PACE col. addr. for pipeline (PACE) synchronization monitoring

Cal.

Recovery from Readout Synchronization Loss

Recovery from Loss of Readout Synchronization

- The FED detects sync. loss by checking
	- the buffer full error flags of the event data packets and
	- the time stamps on the event fragments (BC number, Event Number, PACE column addr.)
- Request to Reset the Readout chain.
	- **Where should be placed this request?**

Abort Gap activity

We would like to have the possibility of applying a Front-End electronics reset signal in 1/x abort gaps. The period of reset (x) would depend on the stability of the system.

Delays associated with Loss of Readout Sync.

FE pipeline (PACE): Cannot read during a "Reset", Reset takes 1~2 clock cycles

Dead time = Readout time of stored events in the Pipeline. For $0 \sim 8$ events, Dead time = $0 \sim 50 \mu s$

URL Reference

http://cmsdoc.cern.ch/cms/ECAL/preshower/electronics/synchro/idx.html $\sqrt{2}$